

Overview of Composites Structures R&D at Carderock Division

Dr. Roger Crane
Structures and Composites Department
Code 65

Brief to JTEG Meeting on "Composite Manufacturing and Repair"
4-6 Nov 2003

Outline

- Who we are
- Recent research topics
 - ➤ Material Qualification
 - ➤ Advanced Material Processing (Intelligent VARTM, co-infusion)
 - ➤ Joint Testing and Analysis
 - ➤ Composites Failure Modeling (MCT, DYCOSS)
 - ➤ Damage Determination for Defect Assessment
 - ➤ Large Structure Collapse Prediction and Testing
- Summary

Carderock Division, Headquarters

Mission

Research and development, test and evaluation, fleet support, and inservice engineering for surface and undersea vehicle hull, mechanical, and electrical (HM&E) systems and propulsors; logistics research and development;

Structures and Composites Department - Mission

Mission:

- Conduct full spectrum RDT&E for Surface Ship and Submarine Structures
- Provide Support to the Marine Industry & Related Areas

Areas of Responsibility:

- Advanced Concepts / Ship Design
- Structural Design / Analysis / Reliability
- Composite Structures Technology
- Lab / Large Scale / At-Sea Test & Evaluation

Uniqueness:

- Expertise in Numerical & Physical Structural Modeling (Metals & Composites)
- Historical Experience in Hull Loads (Seaway, Ice, Air and Underwater Explosion)
- Established Structural Reliability Bases for Affordable Design
- Large marine composite R&D capability (35 scientists, engineers and technicians)

Material Qualification

- Develop standard material qualification procedures for the determination of statistically-based composite mechanical property design values for Naval applications.
 - > Test methods
 - ➤ Material batch requirements
 - > Specimen replicate requirements
 - > Statistical data analysis methods
 - > Environmental conditioning methods (accelerated aging)

Basis

- ➤ Navy test data and procedures (AEM/S, etc.)
- > ASTM test methods
- ➤ Mil Handbook 17 (DOD/FAA-developed document)

Material Qualification:

Aerospace Standards vs. Marine Composites

Material Qualification: Batch to Batch Variability

- Recent test results challenge previous views of material equivalency for "standard" Navy laminate material (E-glass woven roving/vinyl ester) with VARTM process
 - > Potential sources of batch-to-batch strength variability
 - Glass lot
 - Glass manufacturer (sizing)
 - Resin lot
 - Catalyst and other cure agents
 - Ply orientation errors
 - Uniformity of environmental conditioning
 - Variation in fiber volume from VARTM process
 - > Potential sources of general data scatter (modulus and strength)
 - Change in test technician (test facility was constant)
 - Strain gage size (with respect to unit cell size)
 - Test specimen size (with respect to unit cell size)

Advanced Material Processing: Intelligent VARTM Processing

ONR National VARTM Testbed

Advanced Material Processing: Co-Injection Resin Transfer Molding (CIRTM)

- Phase I demonstrated process using
 - 510A as structural resin
 - J2027 phenolic as fire barrier resin
 - 24 oz woven roving as reinforcement
- Flat Panel Development
 - Validated Co-infusion process
 - Validated structural properties and durability (SBS & wedge test)
- Cone Calorimetry Fire Performance
- Developed Methodology for Residual Strength Design after Fire
- Demonstrated Complex Fabrication on Z-Stiffener
- Demonstrated 3-Layer CIRTM with Intumescent layer
- Manufactured full scale room corner fire test specimen

Joint Testing and Analysis

NSWCCD 65

Joint Testing and Analysis

Objective

Develop design guidelines and verify analysis tools for joints in marine composite applications

Joint parametric testing completed

- ➤ Bolted joints
 - Single and double lap configurations
 - ◆ Parameters include d/t, bolt pre-load, edge distance, gap thickness and filler material
- > Adhesively bonded joints
 - Single and double lap configurations
 - Parameters include adherend thickness, adhesive thickness, taper ratio, load angle
- > Secondarily bonded (integral) joints
 - Scarf and doubler configurations
 - Parameters include thickness and taper ratio
 - Second round of testing planned involving moisture conditioning, fatigue

NSWCCD 65

Joint Testing and Analysis

Current analytical focus

- > SPLICE design tool for bolted joints
 - Mathematica notebook
 - Includes bolt flexibility and plate bending
 - Evaluates all bolt and plate failure modes
- > Fracture mechanics analysis for secondarily bonded (integral) joints
 - Finite element method via virtual crack closure technique
 - Sublaminate analysis code (SUBLAM)

• End products

- > Guidance document for joint design
- ➤ Guidance document for joint validation

Failure Modeling: Multicontinuum Theory

- MCT is a theory for obtaining constituent (fiber and matrix) stresses from composite stresses
- MCT based failure analysis can be applied to composite structures using commercially available ANSYS or ABAQUS
- MCT analysis can be run with almost no time penalty, since constituent properties are determined before hand.
- Uniaxial, woven, and particulate unit cell models are available.

MCT Particulate Model

Failure Modeling: Multicontinuum Theory

Example: Thick GRP Shell Structure

- Original FEM analysis overpredicted structural strength by 57%.
- Initial MCT based FEM analysis predicted structural strength within 2%.
- MCT analysis also showed the initiation of damage in a region unobservable during testing, underneath the bolted test fixture.

NSWCCD 65

Failure Modeling: Composite Dynamic Failure Prediction Tool

- Dynamic Failure Analysis
 - Discrete Crack Model
 - Delamination
 - Fillet Cracking

Composite Damage Assessment: Composite Corvette Hull – Shock Test

Ultrasonic Inspection of the hull concentrated on the hat section stiffener tabbing and hull shell between frames 2 and 6 and longitudinal stiffeners B and E (between tank and middle deck).

- This area experiences the highest loads during the initial moments of the shock event.
- Stiffeners tabbing prone to damage under shock loads.
- 100% of the internal hat stiffeners bond to the shell was ultrasonically inspected.
- 63 Data points were recorded and are available for review.

Composite Damage Assessment: SIDER Inspection Method

Structural Irregularity and Damage Evaluation Routine

- SIDER is a vibration-based inspection method
 - ➤ Vibration waves are totally invasive
 - > But not intrusive
- SIDER is designed for the rapid inspection of large structures
 - ➤ A single inspection locates areas where there is structural variation/inconsistency. These are places with:
 - Designed (deliberate) stiffness changes
 - Manufacturing anomalies
 - Service-related damage
 - ➤ Before/After testing helps identify and locate in-service damage
- Detailed (but time consuming) inspections, e.g., UT and laser shearography, can be focused only on regions identified by SIDER

NSWCCD 65 17

SIDER Inspection of Shock Tested Composite Corvette Hull

- Structural Integrity and Damage Evaluation Routine (SIDER) inspection performed prior and between shock tests
- 5 accelerometers used
 - ➤ 2 port side
 - > 2 starboard side
 - ➤ 1 top deck
- Tuned, instrumented midsize sledge hammer used for excitation at 1022 predetermined points
- 4-1/2 hours to inspect whole structure

Pre-Shock SIDER Results

- Single pre-shock SIDER located some structural problems
 - > Deck line debond
- Looking for changes after shock testing
 - Changes relate to damage
 - > Damage can both increase and decrease structural uniformity
 - Local damage causes more flexibility
 - Stiffener debond can cause more homogeneity

SIDER Results - Port/Starboard Analysis

- Single SIDER test of forecastle only
- Located a number of structural features

Structural bulkhead ends

Penetrations (deck prisms, vents

Composite Structural Collapse: Corvette Hull Bending and Collapse Tests

Hull # 1: LTC-Prepreg

- Very poor quality hull
- Insufficient Joints/Connections
- Warm-up / Calibration Test Specimen

Hull # 2: VARTM/Scrimp™

- High quality hull construction
- VARTM Joints/Connections
- Full Validation Test Specimen

Test completed Aug 2002

Test completed July 2003

<u>Dimensions</u>: 28' L x 20' W x 10' H, ~ 20,000 Lbs

NSWCCD 65 21

Composite Structural Collapse: Corvette Hull Bending and Collapse Tests

Objectives

- Design, fabricate and assemble a test fixture for testing 1/2-scale composite ship hull structures
- Conduct elastic hull-girder bending test under hogging and sagging conditions
- Conduct hull ultimate collapse test under sagging mode

Grillage and Attachment Beams (Lehigh University ATLSS)

Composite Structural Collapse: Corvette Hull Buckling Response Predictions

Summary

• The Structures and Composites Department of the Carderock Division offers full service composite structures R&D including:

- ➤ Manufacturing Process Development and Support
- ➤ Material Test Method Development
- ➤ Material Environmental Pre-Conditioning Method Development
- ➤ Structural Design and Analysis
- ➤ Large Component Testing
- ➤ Failure Model Development
- ➤ Structural Damage Prediction
- ➤ Unique Damage Assessment Capabilities

• Focus is supporting the "wet" Navy including:

- ➤ Thick Section GRP Composites for Submarine Applications
- ➤ Glass and Carbon Sandwich Structure for Surface Ship
- ➤ Low Cost, High Quality Fabrication Methods

NSWCCD 65 24